Sign in to use this feature.

Years

Between: -

Search Results (1,329)

Search Parameters:
Keywords = mangrove

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9032 KiB  
Article
Assessing Vulnerability to Cyclone Hazards in the World’s Largest Mangrove Forest, The Sundarbans: A Geospatial Analysis
by Mohammed, Fahmida Sultana, Ariful Khan, Sohag Ahammed, Md. Shamim Reza Saimun, Md Saifuzzaman Bhuiyan, Sanjeev K. Srivastava, Sharif A. Mukul and Mohammed A. S. Arfin-Khan
Forests 2024, 15(10), 1722; https://doi.org/10.3390/f15101722 - 29 Sep 2024
Abstract
The Sundarbans is the world’s largest contiguous mangrove forest with an area of about 10,000 square kilometers and shared between Bangladesh and India. This world-renowned mangrove forest, located on the lower Ganges floodplain and facing the Bay of Bengal, has long served as [...] Read more.
The Sundarbans is the world’s largest contiguous mangrove forest with an area of about 10,000 square kilometers and shared between Bangladesh and India. This world-renowned mangrove forest, located on the lower Ganges floodplain and facing the Bay of Bengal, has long served as a crucial barrier, shielding southern coastal Bangladesh from cyclone hazards. However, the Sundarbans mangrove ecosystem is now increasingly threatened by climate-induced hazards, particularly tropical cyclones originating from the Indian Ocean. To assess the cyclone vulnerability of this unique ecosystem, using geospatial techniques, we analyzed the damage caused by past cyclones and the subsequent recovery across three salinity zones, i.e., Oligohaline, Mesohaline, and Polyhaline. Our study also examined the relationship between cyclone intensity with the extent of damage and forest recovery. The findings of our study indicate that the Polyhaline zone, the largest in terms of area and with the lowest elevation, suffered the most significant damage from cyclones in the Sundarbans region, likely due to its proximity to the most cyclone paths. A correlation analysis revealed that cyclone damage positively correlated with wind speed and negatively correlated with the distance of landfall from the center of the Sundarbans. With the expectation of more extreme weather events in the near future, the Sundarbans mangrove forest faces a potentially devastating outlook unless both natural protection processes and human interventions are undertaken to safeguard this critical ecosystem. Full article
(This article belongs to the Special Issue Biodiversity, Health, and Ecosystem Services of Mangroves)
Show Figures

Figure 1

20 pages, 6529 KiB  
Article
Spatial Differentiation of Mangrove Aboveground Biomass and Identification of Its Main Environmental Drivers in Qinglan Harbor Mangrove Nature Reserve
by Kaiyue Wang, Meihuijuan Jiang, Yating Li, Shengnan Kong, Yilun Gao, Yingying Huang, Penghua Qiu, Yanli Yang and Siang Wan
Sustainability 2024, 16(19), 8408; https://doi.org/10.3390/su16198408 - 27 Sep 2024
Abstract
In the Bamen Bay area of the Qinglan Harbor Mangrove Provincial Nature Reserve in Wenchang, Hainan Province, China, mangrove aboveground biomass (AGB) was estimated using high-resolution UAV ortho-imagery and UAV LiDAR data. The spatial distribution characteristics of AGB were studied using global Moran’s [...] Read more.
In the Bamen Bay area of the Qinglan Harbor Mangrove Provincial Nature Reserve in Wenchang, Hainan Province, China, mangrove aboveground biomass (AGB) was estimated using high-resolution UAV ortho-imagery and UAV LiDAR data. The spatial distribution characteristics of AGB were studied using global Moran’s I index and hotspot analysis. Optimal geographic detectors and regression models were employed to analyze the relationship between AGB and key environmental factors. The results indicate that (1) the average AGB in the study area was 141.22 Mg/ha, with significant spatial variation. High AGB values were concentrated in the southwestern and northeastern regions, while low values were mainly found in the central and southeastern regions. (2) Plant species, water pH, soil total potassium, salinity, dissolved oxygen, elevation, soil organic matter, soil total phosphorus, and soil total nitrogen were identified as major factors influencing the spatial distribution of AGB. The interaction results indicate either bifactor enhancement or nonlinear enhancement, showing a significantly higher impact compared with single factors. (3) Comprehensive regression model results reveal that soil total nitrogen was the primary factor affecting AGB, followed by soil total potassium, with water pH having the least impact. Factors positively correlated with AGB promoted biomass growth, while elevation negatively affected AGB, inhibiting biomass accumulation. The findings provide critical insights that can guide targeted conservation efforts and management strategies aimed at enhancing mangrove ecosystem health and resilience, particularly by focusing on key areas identified for potential improvement and by addressing the complex interactions among environmental factors. Full article
Show Figures

Figure 1

24 pages, 3135 KiB  
Review
Current Status of Remote Sensing for Studying the Impacts of Hurricanes on Mangrove Forests in the Coastal United States
by Abhilash Dutta Roy, Daria Agnieszka Karpowicz, Ian Hendy, Stefanie M. Rog, Michael S. Watt, Ruth Reef, Eben North Broadbent, Emma F. Asbridge, Amare Gebrie, Tarig Ali and Midhun Mohan
Remote Sens. 2024, 16(19), 3596; https://doi.org/10.3390/rs16193596 - 26 Sep 2024
Abstract
Hurricane incidents have become increasingly frequent along the coastal United States and have had a negative impact on the mangrove forests and their ecosystem services across the southeastern region. Mangroves play a key role in providing coastal protection during hurricanes by attenuating storm [...] Read more.
Hurricane incidents have become increasingly frequent along the coastal United States and have had a negative impact on the mangrove forests and their ecosystem services across the southeastern region. Mangroves play a key role in providing coastal protection during hurricanes by attenuating storm surges and reducing erosion. However, their resilience is being increasingly compromised due to climate change through sea level rises and the greater intensity of storms. This article examines the role of remote sensing tools in studying the impacts of hurricanes on mangrove forests in the coastal United States. Our results show that various remote sensing tools including satellite imagery, Light detection and ranging (LiDAR) and unmanned aerial vehicles (UAVs) have been used to detect mangrove damage, monitor their recovery and analyze their 3D structural changes. Landsat 8 OLI (14%) has been particularly useful in long-term assessments, followed by Landsat 5 TM (9%) and NASA G-LiHT LiDAR (8%). Random forest (24%) and linear regression (24%) models were the most common modeling techniques, with the former being the most frequently used method for classifying satellite images. Some studies have shown significant mangrove canopy loss after major hurricanes, and damage was seen to vary spatially based on factors such as proximity to oceans, elevation and canopy structure, with taller mangroves typically experiencing greater damage. Recovery rates after hurricane-induced damage also vary, as some areas were seen to show rapid regrowth within months while others remained impacted after many years. The current challenges include capturing fine-scale changes owing to the dearth of remote sensing data with high temporal and spatial resolution. This review provides insights into the current remote sensing applications used in hurricane-prone mangrove habitats and is intended to guide future research directions, inform coastal management strategies and support conservation efforts. Full article
Show Figures

Figure 1

30 pages, 6698 KiB  
Article
Scalable Mangrove Monitoring with Limited Field Data: Integrating MREDT and DACN-M
by Yuchen Zhao, Shulei Wu, Xianyao Zhang, Huandong Chen, Jiasen Zhuang and Zhongqiang Wu
Forests 2024, 15(10), 1696; https://doi.org/10.3390/f15101696 - 25 Sep 2024
Abstract
Mangroves play a crucial ecological and economic role but face significant threats, particularly on Hainan Island, which has the highest mangrove species diversity in China. Remote sensing and AI techniques offer potential solutions for monitoring these ecosystems, but challenges persist due to difficult [...] Read more.
Mangroves play a crucial ecological and economic role but face significant threats, particularly on Hainan Island, which has the highest mangrove species diversity in China. Remote sensing and AI techniques offer potential solutions for monitoring these ecosystems, but challenges persist due to difficult access for field sampling. To address these issues, we propose a novel model combining a Mangrove Rough Extraction Decision Tree (MREDT) and a Dynamic Attention Convolutional Network (DACN-M). Initially, we used drones and field surveys to conduct multiple observations in Dongzhaigang Nature Reserve, identifying the boundaries of the mangroves. Based on these features, we constructed the MREDT model to mitigate model failure caused by light instability, simplifying transfer to other study areas without requiring annotated samples or extensive field surveys. Next, we developed the DACN-M model, which refines the rough extraction features from MREDT and incorporates contextual information for more accurate detection. Experimental results demonstrate that our proposed method effectively differentiates mangroves from other vegetation, achieving F1 Scores above 75% and IoU values greater than 60% across six study areas. In conclusion, our proposed method not only accurately identifies and monitors mangrove distribution but also offers the significant advantage of being transferable to other study areas without the need for annotated samples or field surveys. This provides a robust and scalable solution for protecting and preserving critical mangrove ecosystems and supports effective conservation efforts in various regions. Full article
Show Figures

Figure 1

15 pages, 2732 KiB  
Article
Allometric Models of Aboveground Biomass in Mangroves Compared with Those of the Climate Action Reserve Standard Applied in the Carbon Market
by Carlos Roberto Ávila-Acosta, Marivel Domínguez-Domínguez, César Jesús Vázquez-Navarrete, Rocío Guadalupe Acosta-Pech and Pablo Martínez-Zurimendi
Resources 2024, 13(9), 129; https://doi.org/10.3390/resources13090129 - 17 Sep 2024
Abstract
The standardized methods used in carbon markets require measurement of the biomass and carbon stored in trees, which can be quantified through allometric equations. The objective of this study was to analyze aboveground biomass estimates with allometric models in three mangrove species and [...] Read more.
The standardized methods used in carbon markets require measurement of the biomass and carbon stored in trees, which can be quantified through allometric equations. The objective of this study was to analyze aboveground biomass estimates with allometric models in three mangrove species and compare them with those used by the Climate Action Reserve (CAR) standard. The mangrove forest in Tabasco, Mexico, was certified with the Forest Protocol for Mexico Version 2.0 (FPM) of the CAR standard. Allometric equations for mangrove species were reviewed to determine the most suitable equation for the calculation of biomass. The predictions of the allometric equations of the FPM were analyzed with data from Tabasco from the National Forest and Soil Inventory 2015–2020, and the percentages of trees within the ranges of diameters of the FPM equations were determined. The FPM equations generated higher biomass values for Rhizophora mangle and lower values for Avicennia germinans than the seven equations with which they were compared. In the mangrove swamp of Ejido Úrsulo Galván, Tabasco, 81.8% of the biomass of A. germinans, 34.4% of Laguncularia racemosa and 24.0% of R. mangle were within the diameter range of the FPM equations, and in Tabasco, 28.5% of A. germinans, 16.7% of L. racemosa and 5.7% of R. mangle were within the diameter range. For A. germinans and R. mangle, we recommend using the equation that considers greater maximum diameters. The allometric equations of the FPM do not adequately predict a large percentage of the biomass. Full article
Show Figures

Figure 1

18 pages, 1033 KiB  
Opinion
Mangrove-Based Carbon Market Projects: 15 Considerations for Engaging and Supporting Local Communities
by Daria Agnieszka Karpowicz, Midhun Mohan, Michael S. Watt, Jorge F. Montenegro, Shalini A. L. King, Pandi P. Selvam, Manickam Nithyanandan, Barakalla Robyn, Tarig Ali, Meshal M. Abdullah, Willie Doaemo and Ewane Basil Ewane
Diversity 2024, 16(9), 574; https://doi.org/10.3390/d16090574 - 12 Sep 2024
Cited by 1
Abstract
Mangroves provide numerous ecological, social, and economic benefits that include carbon sequestration, habitat for biodiversity, food, recreation and leisure, income, and coastal resilience. In this regard, mangrove-based carbon market projects (MbCMP), involving mangrove conservation, protection, and restoration, are a nature-based solution (NbS) for [...] Read more.
Mangroves provide numerous ecological, social, and economic benefits that include carbon sequestration, habitat for biodiversity, food, recreation and leisure, income, and coastal resilience. In this regard, mangrove-based carbon market projects (MbCMP), involving mangrove conservation, protection, and restoration, are a nature-based solution (NbS) for climate change mitigation. Despite the proliferation of blue carbon projects, a highly publicized need for local community participation by developers, and existing project implementation standards, local communities are usually left out for several reasons, such as a lack of capacity to engage in business-to-business (B2B) market agreements and communication gaps. Local communities need to be engaged and supported at all stages of the MbCMP development process to enable them to protect their ecological, economic, and social interests as custodians of such a critical ecosystem. In this paper, we provided 15 strategic considerations and recommendations to engage and secure the interests of local communities in the growing mangrove carbon market trade. The 15 considerations are grouped into four recommendation categories: (i) project development and community engagement, (ii) capacity building and educational activities, (iii) transparency in resource allocation and distribution, and (iv) partnerships with local entities and long-term monitoring. We expect our study to increase local participation and community-level ecological, social, and economic benefits from MbCMP by incorporating equitable benefit-sharing mechanisms in a B2B conservation-agreement model. Full article
(This article belongs to the Special Issue Biodiversity and Conservation of Mangroves)
Show Figures

Figure 1

17 pages, 6378 KiB  
Article
Bioprospecting of Mangrove Filamentous Fungi for the Biodegradation of Polyethylene Microplastics
by Arthur Aguiar, Letícia Gama, Milene Fornari, Almir Neto, Rodrigo de Souza, Rafael Perna, Laura Castro, Stella Kovacs, Marta Filipa Simões, Nelson Ferreira, Yoannis Domínguez, Leandro de Castro and Cristiane Ottoni
J. Mar. Sci. Eng. 2024, 12(9), 1629; https://doi.org/10.3390/jmse12091629 - 12 Sep 2024
Abstract
The accumulation of microplastics (MPs) in the environment has been a bottleneck for scientific society. Several approaches have been described as possibilities for reducing MPs in aquatic and terrestrial ecosystems; however, most of them are not environmentally friendly. Filamentous fungi (Ff) cells are [...] Read more.
The accumulation of microplastics (MPs) in the environment has been a bottleneck for scientific society. Several approaches have been described as possibilities for reducing MPs in aquatic and terrestrial ecosystems; however, most of them are not environmentally friendly. Filamentous fungi (Ff) cells are currently considered a promising solution as a treatment for MPs. Therefore, the present study reports the potential ability of Ff isolated from mangrove sediments to biodegrade low-density polyethylene MPs (LDPEMPs). Six Ff strains were grown in batch cultures for 28 days, and one of them, Aspergillus sp. (AQ3A), showed the most prominent profile to biodegrade polymeric compounds. After morphological and molecular analysis, all strains were identified as belonging to the genera Aspergillus (MQ1C, AQ2A and AQ3A), Penicillium (MQ1A), and Trichoderma (MQ1B and MQ2A). The strain Aspergillus sp. (AQ3A) showed the most promising results with a LDPEMPs reduction rate of 47% and biomass formation of 0.0890 g·mL−1. Complementary studies with Aspergillus sp. (AQ3A) using Fourier-transform infrared spectroscopy (FTIR) highlighted changes in the molecular structure of LDPEMPs. These results indicate that Ff can contribute to the biodegradation of LDPEMPs. However, other parameters, mainly associated with the enzymes that are involved in this biodegradation process, need to be explored. Full article
(This article belongs to the Special Issue Effects of Ocean Plastic Pollution on Aquatic Life)
Show Figures

Figure 1

15 pages, 3777 KiB  
Article
Metachromadora parobscura sp. nov. and Molgolaimus longicaudatus sp. nov. (Nematoda, Desmodoridae) from Mangrove Wetlands of China
by Jing Sun and Yong Huang
J. Mar. Sci. Eng. 2024, 12(9), 1621; https://doi.org/10.3390/jmse12091621 - 11 Sep 2024
Abstract
Two new species of free-living marine nematodes, Metachromadora parobscura sp. nov. and Molgolaimus longicaudatus sp. nov., from mangrove wetlands of Beihai, Guangxi province in China, are described. Metachromadora parobscura sp. nov. is characterized by eight longitudinal rows of somatic setae arranged from the [...] Read more.
Two new species of free-living marine nematodes, Metachromadora parobscura sp. nov. and Molgolaimus longicaudatus sp. nov., from mangrove wetlands of Beihai, Guangxi province in China, are described. Metachromadora parobscura sp. nov. is characterized by eight longitudinal rows of somatic setae arranged from the posterior part of the body, loop-shaped amphidial foveae with an open top and double contours, pharynx with bipartite cuticularized internal cavity, spicules with well-developed capitulum, gubernaculum canoe-shaped, without apophysis, 6–8 precloacal tubular supplements, and a short, conical tail with two ventral protuberances. It could be easily distinguished from the known species by spicule length and numbers of precloacal supplements. Molgolaimus longicaudatus sp. nov. is characterized by short cephalic setae, relatively small amphidial fovea, slender spicules ventrally bent with pronounced hooked capitulum and tapered distal end, two poriform precloacal supplements, and a relatively long conico-cylindrical tail. It differs from other species by the shape of spicules and long tail. Nearly full-length SSU sequences (1542–1592 bp) of the two species were provided, and phylogenetic trees based on maximum likelihood analyses supported the taxonomic position of the two new species. The combined use of traditional morphology-based taxonomy and molecular approaches has been proven to be a good choice for identification of free-living nematodes. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

19 pages, 2059 KiB  
Article
Ecological Shifts: Plant Establishment in an Animal-Based Ecosystem
by Linda J. Walters, Paul E. Sacks, Katherine Harris and Giovanna McClenachan
Environments 2024, 11(9), 193; https://doi.org/10.3390/environments11090193 - 8 Sep 2024
Abstract
Shifts from saltmarsh to mangroves are well-documented at mangrove poleward boundaries. A regime shift from intertidal oyster (Crassostrea virginica) reefs to mangrove islands has recently been documented in transitional phases in Florida, USA. To understand the local drivers of an oyster/mangrove [...] Read more.
Shifts from saltmarsh to mangroves are well-documented at mangrove poleward boundaries. A regime shift from intertidal oyster (Crassostrea virginica) reefs to mangrove islands has recently been documented in transitional phases in Florida, USA. To understand the local drivers of an oyster/mangrove regime shift and potential tipping points leading to a permanent mangrove state, we tracked all mangrove propagules (n = 1681) across 15 intertidal oyster reefs with or without adult mangroves for 15 months in Mosquito Lagoon, FL. While no propagule bottleneck was observed, few (3.2%) mangrove propagules/seedlings survived on reefs with no prior encroachment, compared to 11.3% and 16.1% on reefs with established older (pre-1943) or newer (1943 to present) adult mangrove stands, respectively. In total, 90.6% of the arriving propagules were from the red mangrove Rhizophora mangle; 13.2% of these were alive at the end of this study. Survival was <1% for black (Avicenna germinans) and 0% for white (Laguncularia racemosa) mangroves. Factors that promoted red mangrove success included close proximity (≤0.3 m) to adult mangroves, especially black mangroves; partial, upright burial of propagules in sediment; and arrival on reefs after annual high-water season. Additionally, once reefs had 50% mangrove cover, the density of red mangrove seedlings increased from 0.04 to 0.46 individuals m−2. Although climate change has alleviated the impact of extreme freezes on mangroves, local factors determine whether the regime shift will be complete and permanent; positive feedback loops associated with established mangroves suggest mangrove recruitment on intertidal oyster reefs will continue to increase. Full article
Show Figures

Figure 1

20 pages, 2279 KiB  
Article
Halotolerant Endophytic Bacteria Priestia flexa 7BS3110 with Hg2+ Tolerance Isolated from Avicennia germinans in a Caribbean Mangrove from Colombia
by Zamira E. Soto-Varela, Christian J. Orozco-Sánchez, Hernando José Bolívar-Anillo, José M. Martínez, Nuria Rodríguez, Natalia Consuegra-Padilla, Alfredo Robledo-Meza and Ricardo Amils
Microorganisms 2024, 12(9), 1857; https://doi.org/10.3390/microorganisms12091857 - 7 Sep 2024
Abstract
The mangrove ecosystems of the Department of Atlántico (Colombian Caribbean) are seriously threatened by problems of hypersalinization and contamination, especially by heavy metals from the Magdalena River. The mangrove plants have developed various mechanisms to adapt to these stressful conditions, as well as [...] Read more.
The mangrove ecosystems of the Department of Atlántico (Colombian Caribbean) are seriously threatened by problems of hypersalinization and contamination, especially by heavy metals from the Magdalena River. The mangrove plants have developed various mechanisms to adapt to these stressful conditions, as well as the associated microbial populations that favor their growth. In the present work, the tolerance and detoxification capacity to heavy metals, especially to mercury, of a halotolerant endophytic bacterium isolated from the species Avicennia germinans located in the Balboa Swamp in the Department of Atlántico was characterized. Diverse microorganisms were isolated from superficially sterilized A. germinans leaves. Tolerance to NaCl was evaluated for each of the obtained isolates, and the most resistant was selected to assess its tolerance to Pb2+, Cu2+, Hg2+, Cr3+, Co2+, Ni2+, Zn2+, and Cd2+, many of which have been detected in high concentrations in the area of study. According to the ANI and AAI percentages, the most halotolerant strain was identified as Priestia flexa, named P. flexa 7BS3110, which was able to tolerate up to 12.5% (w/v) NaCl and presented a minimum inhibitory concentrations (MICs) of 0.25 mM for Hg, 10 mM for Pb, and 15 mM for Cr3+. The annotation of the P. flexa 7BS3110 genome revealed the presence of protein sequences associated with exopolysaccharide (EPS) production, thiol biosynthesis, specific proteins for chrome efflux, non-specific proteins for lead efflux, and processes associated with sulfur and iron homeostasis. Scanning electron microscopy (SEM) analysis showed morphological cellular changes and the transmission electron microscopy (TEM) showed an electrodense extracellular layer when exposed to 0.25 mM Hg2+. Due to the high tolerance of P. flexa 7BS3110 to Hg2+ and NaCl, its ability to grow when exposed to both stressors was tested, and it was able to thrive in the presence of 5% (w/v) NaCl and 0.25 mM of Hg2+. In addition, it was able to remove 98% of Hg2+ from the medium when exposed to a concentration of 14 mg/L of this metalloid. P. flexa 7BS3110 has the potential to bioremediate Hg2+ halophilic contaminated ecosystems. Full article
(This article belongs to the Special Issue Halophilic Microorganisms, 2nd Edition)
Show Figures

Figure 1

43 pages, 24204 KiB  
Article
Support Vector Machine Algorithm for Mapping Land Cover Dynamics in Senegal, West Africa, Using Earth Observation Data
by Polina Lemenkova
Earth 2024, 5(3), 420-462; https://doi.org/10.3390/earth5030024 - 6 Sep 2024
Abstract
This paper addresses the problem of mapping land cover types in Senegal and recognition of vegetation systems in the Saloum River Delta on the satellite images. Multi-seasonal landscape dynamics were analyzed using Landsat 8-9 OLI/TIRS images from 2015 to 2023. Two image classification [...] Read more.
This paper addresses the problem of mapping land cover types in Senegal and recognition of vegetation systems in the Saloum River Delta on the satellite images. Multi-seasonal landscape dynamics were analyzed using Landsat 8-9 OLI/TIRS images from 2015 to 2023. Two image classification methods were compared, and their performance was evaluated in the GRASS GIS software (version 8.4.0, creator: GRASS Development Team, original location: Champaign, Illinois, USA, currently multinational project) by means of unsupervised classification using the k-means clustering algorithm and supervised classification using the Support Vector Machine (SVM) algorithm. The land cover types were identified using machine learning (ML)-based analysis of the spectral reflectance of the multispectral images. The results based on the processed multispectral images indicated a decrease in savannas, an increase in croplands and agricultural lands, a decline in forests, and changes to coastal wetlands, including mangroves with high biodiversity. The practical aim is to describe a novel method of creating land cover maps using RS data for each class and to improve accuracy. We accomplish this by calculating the areas occupied by 10 land cover classes within the target area for six consecutive years. Our results indicate that, in comparing the performance of the algorithms, the SVM classification approach increased the accuracy, with 98% of pixels being stable, which shows qualitative improvements in image classification. This paper contributes to the natural resource management and environmental monitoring of Senegal, West Africa, through advanced cartographic methods applied to remote sensing of Earth observation data. Full article
Show Figures

Figure 1

16 pages, 4560 KiB  
Article
The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF
by Qi Tan, Xinyu Ye, Siqi Fu, Yihao Yin, Yufeng Liu, Jianying Wu, Fei Cao, Bo Wang, Tingshun Zhu, Wencong Yang and Zhigang She
Mar. Drugs 2024, 22(9), 407; https://doi.org/10.3390/md22090407 - 5 Sep 2024
Abstract
Twelve compounds, including four undescribed cytochalasins, xylariachalasins A–D (14), four undescribed polyketides (58), and four known cytochalasins (912), were isolated from the mangrove endophytic fungus Xylaria arbuscula QYF. Their structures and [...] Read more.
Twelve compounds, including four undescribed cytochalasins, xylariachalasins A–D (14), four undescribed polyketides (58), and four known cytochalasins (912), were isolated from the mangrove endophytic fungus Xylaria arbuscula QYF. Their structures and absolute configurations were established by extensive spectroscopic analyses (1D and 2D NMR, HRESIMS), electronic circular dichroism (ECD) calculations, 13C NMR calculation and DP4+ analysis, single-crystal X-ray diffraction, and the modified Mosher ester method. Compounds 1 and 2 are rare cytochalasin hydroperoxides. In bioactivity assays, Compound 2 exhibited moderate antimicrobial activities against Staphylococcus aureus and Candida albicans with MIC values of 12.5 μM for both Compound 10 exhibited significant cytotoxic activity against MDA-MB-435 with an IC50 value of 3.61 ± 1.60 μM. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products, 2nd Edition)
Show Figures

Graphical abstract

31 pages, 40386 KiB  
Article
Unveiling a New Antimicrobial Peptide with Efficacy against P. aeruginosa and K. pneumoniae from Mangrove-Derived Paenibacillus thiaminolyticus NNS5-6 and Genomic Analysis
by Namfa Sermkaew, Apichart Atipairin, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul, Jumpei Uchiyama and Nuttapon Songnaka
Antibiotics 2024, 13(9), 846; https://doi.org/10.3390/antibiotics13090846 - 5 Sep 2024
Abstract
This study focused on the discovery of the antimicrobial peptide (AMP) derived from mangrove bacteria. The most promising isolate, NNS5-6, showed the closest taxonomic relation to Paenibacillus thiaminolyticus, with the highest similarity of 74.9%. The AMP produced by Paenibacillus thiaminolyticus NNS5-6 exhibited [...] Read more.
This study focused on the discovery of the antimicrobial peptide (AMP) derived from mangrove bacteria. The most promising isolate, NNS5-6, showed the closest taxonomic relation to Paenibacillus thiaminolyticus, with the highest similarity of 74.9%. The AMP produced by Paenibacillus thiaminolyticus NNS5-6 exhibited antibacterial activity against various Gram-negative pathogens, especially Pseudomonas aeruginosa and Klebsiella pneumoniae. The peptide sequence consisted of 13 amino acids and was elucidated as Val-Lys-Gly-Asp-Gly-Gly-Pro-Gly-Thr-Val-Tyr-Thr-Met. The AMP mainly exhibited random coil and antiparallel beta-sheet structures. The stability study indicated that this AMP was tolerant of various conditions, including proteolytic enzymes, pH (1.2–14), surfactants, and temperatures up to 40 °C for 12 h. The AMP demonstrated 4 µg/mL of MIC and 4–8 µg/mL of MBC against both pathogens. Time-kill kinetics showed that the AMP acted in a time- and concentration-dependent manner. A cell permeability assay and scanning electron microscopy revealed that the AMP exerted the mode of action by disrupting bacterial membranes. Additionally, nineteen biosynthetic gene clusters of secondary metabolites were identified in the genome. NNS5-6 was susceptible to various commonly used antibiotics supporting the primary safety requirement. The findings of this research could pave the way for new therapeutic approaches in combating antibiotic-resistant pathogens. Full article
Show Figures

Figure 1

5 pages, 1253 KiB  
Commentary
The Oldest Holocene Caribbean Mangroves and Postglacial Sea Level Rise: Biogeographical Implications
by Valentí Rull
Quaternary 2024, 7(3), 38; https://doi.org/10.3390/quat7030038 - 3 Sep 2024
Viewed by 207
Abstract
This commentary underscores the importance of the recent discovery of the oldest in situ Holocene mangrove sediments found to date in the Caribbean region. It also emphasizes the implications of this finding for understanding postglacial sea level rise and the subsequent recolonization of [...] Read more.
This commentary underscores the importance of the recent discovery of the oldest in situ Holocene mangrove sediments found to date in the Caribbean region. It also emphasizes the implications of this finding for understanding postglacial sea level rise and the subsequent recolonization of current Caribbean coasts by mangrove communities. These communities likely survived the last glaciation in small microrefugia located beyond the present continental shelf, from where they expanded to form the present-day mangrove biogeographical patterns. Full article
Show Figures

Figure 1

11 pages, 2819 KiB  
Article
New Sesquiterpenoids from the Mangrove-Derived Fungus Talaromyces sp. as Modulators of Nuclear Receptors
by Tanwei Gu, Jian Cai, Danni Xie, Jianglian She, Yonghong Liu, Xuefeng Zhou and Lan Tang
Mar. Drugs 2024, 22(9), 403; https://doi.org/10.3390/md22090403 - 3 Sep 2024
Viewed by 234
Abstract
Four new sesquiterpenoids, talaroterpenes A–D (14), were isolated from the mangrove-derived fungus Talaromyces sp. SCSIO 41412. The structures of compounds 14 were elucidated through comprehensive NMR and MS spectroscopic analyses. The absolute configurations of 14 [...] Read more.
Four new sesquiterpenoids, talaroterpenes A–D (14), were isolated from the mangrove-derived fungus Talaromyces sp. SCSIO 41412. The structures of compounds 14 were elucidated through comprehensive NMR and MS spectroscopic analyses. The absolute configurations of 14 were assigned based on single-crystal X-ray diffraction and calculated electronic circular dichroism analysis. Talaroterpenes A–D (14) were evaluated with their regulatory activities on nuclear receptors in HepG2 cells. Under the concentrations of 200 μM, 1, 3 and 4 exhibited varying degrees of activation on ABCA1 and PPARα, while 4 showed the strongest activities. Furthermore, 4 induced significant alterations in the expression of downstream target genes CLOCK and BMAL1 of RORα, and the in silico molecular docking analysis supported the direct binding interactions of 4 with RORα protein. This study revealed that talaroterpene D (4) was a new potential non-toxic modulator of nuclear receptors. Full article
Show Figures

Figure 1

Back to TopTop