\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Binary self-dual codes of various lengths with new weight enumerators from a modified bordered construction and neighbours

  • *Corresponding author: Adam M. Roberts

    *Corresponding author: Adam M. Roberts 
Abstract / Introduction Full Text(HTML) Figure(0) / Table(8) Related Papers Cited by
  • In this work, we define a modification of a bordered construction for self-dual codes which utilises $ \lambda $-circulant matrices. We provide the necessary conditions for the construction to produce self-dual codes over finite commutative Frobenius rings of characteristic 2. Using the modified construction together with the neighbour construction, we construct many binary self-dual codes of lengths 54, 68, 82 and 94 with weight enumerators that have previously not been known to exist.

    Mathematics Subject Classification: Primary: 94B05, 15B10; Secondary: 15B33.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Quaternary notation system for elements of $ \mathbb{F}_2+u \mathbb{F}_2 $

    $ \mathbb{F}_2+u \mathbb{F}_2 $ Symbol
    $ 0 $ $ \texttt{0} $
    $ 1 $ $ \texttt{1} $
    $ u $ $ \texttt{2} $
    $ 1+u $ $ \texttt{3} $
     | Show Table
    DownLoad: CSV

    Table 2.  Code of length 54 over $ \mathbb{F}_2 $ from Theorem 3.1 to which we apply Remark 4.1 to obtain the code in Table 3, where $ \boldsymbol{{\xi}} = (\xi_1,\xi_2,\xi_3,\xi_4,\xi_5,\xi_6) $

    $ \mathcal{C}_{54,i}^* $ $ {\bf{{a}}} $ $ {\bf{{b}}} $ $ {\bf{{c}}} $ $ \boldsymbol{{\xi}} $
    1 $ \texttt{(0111000101101)} $ $ \texttt{(1101110000100)} $ $ \texttt{(0101111110011)} $ $ \texttt{(001101)} $
     | Show Table
    DownLoad: CSV

    Table 3.  New binary self-dual $ [54,27,10] $ code from searching for neighbours of $ \mathcal{C}_{54,j}^* $ as given in Table 2 using Remark 4.1 with $ {\bf{{x}}} = ({\bf{{0}}},{\bf{{x}}}_0) $

    $ \mathcal{C}_{54,i} $ $ \mathcal{C}_{54,j}^* $ $ {\bf{{x}}}_0 $ $ W_{54,k} $ $ \alpha $ $ |\text{Aut}({\mathcal{C}_{54,i}})| $
    1 1 $ \texttt{(000001100101001000111101101)} $ 1 $ 23 $ $ 3 $
     | Show Table
    DownLoad: CSV

    Table 4.  New binary self-dual $ [68,34,12] $ codes from Theorem 3.1 over $ \mathbb{F}_2+u \mathbb{F}_2 $, where $ \boldsymbol{{\xi}} = (\xi_1,\xi_2,\xi_3,\xi_4,\xi_5,\xi_6) $

    $ \mathcal{C}_{68,i} $ $ \lambda $ $ \mu $ $ {\bf{{a}}} $ $ {\bf{{b}}} $ $ {\bf{{c}}} $ $ \boldsymbol{{\xi}} $ $ W_{68,j} $ $ \alpha $ $ \beta $ $ |\text{Aut}({\mathcal{C}_{68,i}})| $
    1 $ \texttt{1} $ $ \texttt{1} $ $ \texttt{(22120031)} $ $ \texttt{(02331100)} $ $ \texttt{(33331213)} $ $ \texttt{(101132)} $ 1 $ 110 $ $ - $ $ 2 $
    2 $ \texttt{1} $ $ \texttt{1} $ $ \texttt{(10021300)} $ $ \texttt{(31232012)} $ $ \texttt{(30313131)} $ $ \texttt{(120023)} $ 1 $ 124 $ $ - $ $ 2 $
    3 $ \texttt{1} $ $ \texttt{1} $ $ \texttt{(01323103)} $ $ \texttt{(20022123)} $ $ \texttt{(00300222)} $ $ \texttt{(013332)} $ 2 $ 20 $ $ 1 $ $ 2 $
    4 $ \texttt{1} $ $ \texttt{3} $ $ \texttt{(01230200)} $ $ \texttt{(13010312)} $ $ \texttt{(22003002)} $ $ \texttt{(102232)} $ 2 $ 28 $ $ 1 $ $ 2 $
    5 $ \texttt{1} $ $ \texttt{1} $ $ \texttt{(31221023)} $ $ \texttt{(30003111)} $ $ \texttt{(13012103)} $ $ \texttt{(233310)} $ 2 $ 32 $ $ 1 $ $ 2 $
    6 $ \texttt{1} $ $ \texttt{1} $ $ \texttt{(03210210)} $ $ \texttt{(32221121)} $ $ \texttt{(13331101)} $ $ \texttt{(122201)} $ 2 $ 34 $ $ 1 $ $ 2 $
    7 $ \texttt{1} $ $ \texttt{1} $ $ \texttt{(00030320)} $ $ \texttt{(21031233)} $ $ \texttt{(32100012)} $ $ \texttt{(122201)} $ 2 $ 36 $ $ 1 $ $ 2 $
     | Show Table
    DownLoad: CSV

    Table 5.  Code of length 34 over $ \mathbb{F}_2+u \mathbb{F}_2 $ from Theorem 3.1 to the image of which under $ \varphi_{ \mathbb{F}_2+u \mathbb{F}_2} $ we then apply Remark 4.1 to obtain the codes in Table 6, where $ \boldsymbol{{\xi}} = (\xi_1,\xi_2,\xi_3,\xi_4,\xi_5,\xi_6) $

    $ \mathcal{C}_{34,i}^* $ $ \lambda $ $ \mu $ $ {\bf{{a}}} $ $ {\bf{{b}}} $ $ {\bf{{c}}} $ $ \boldsymbol{{\xi}} $
    1 $ \texttt{1} $ $ \texttt{1} $ $ \texttt{(01323103)} $ $ \texttt{(20022123)} $ $ \texttt{(00300222)} $ $ \texttt{(013332)} $
     | Show Table
    DownLoad: CSV

    Table 6.  New binary self-dual $ [68,34,12] $ codes from searching for neighbours of $ \varphi_{ \mathbb{F}_2+u \mathbb{F}_2}(\mathcal{C}_{34,j}^*) $ using Remark 4.1 with $ {\bf{{x}}} = ({\bf{{0}}},{\bf{{x}}}_0) $, where $ \mathcal{C}_{34,j}^* $ are as given in Table 5

    $ \mathcal{C}_{68,i} $ $ \mathcal{C}_{34,j}^* $ $ {\bf{{x}}}_0 $ $ W_{68,k} $ $ \alpha $ $ \beta $ $ |\text{Aut}({\mathcal{C}_{68,i}})| $
    8 1 $ \texttt{(0101010011111010001101100011011100)} $ 1 $ 113 $ $ - $ $ 1 $
    9 1 $ \texttt{(1110010011100001110010110111100100)} $ 1 $ 114 $ $ - $ $ 1 $
    10 1 $ \texttt{(1010100100010111000000100111010111)} $ 1 $ 116 $ $ - $ $ 1 $
    11 1 $ \texttt{(0011000011011101010101010100010000)} $ 1 $ 118 $ $ - $ $ 1 $
    12 1 $ \texttt{(0101010001111010000101100011011111)} $ 1 $ 121 $ $ - $ $ 1 $
    13 1 $ \texttt{(0011001001011000000110010111110101)} $ 1 $ 123 $ $ - $ $ 1 $
    14 1 $ \texttt{(0101110101111010001101100011011101)} $ 2 $ 37 $ $ 1 $ $ 1 $
     | Show Table
    DownLoad: CSV

    Table 7.  New binary self-dual $ [82,41,14] $ codes from Theorem 3.1 over $ \mathbb{F}_2 $, where $ \boldsymbol{{\xi}} = (\xi_1,\xi_2,\xi_3,\xi_4,\xi_5,\xi_6) $

    $ \mathcal{C}_{82,i} $ $ {\bf{{a}}} $ $ {\bf{{b}}} $ $ {\bf{{c}}} $ $ \boldsymbol{{\xi}} $
    1 $ \texttt{(00110011100000000110)} $ $ \texttt{(00100110011101010011)} $ $ \texttt{(00010010010001000001)} $ $ \texttt{(101010)} $
    2 $ \texttt{(11001011011010110101)} $ $ \texttt{(10011010011011010000)} $ $ \texttt{(01010011100101001010)} $ $ \texttt{(101010)} $
    3 $ \texttt{(00011110011001011110)} $ $ \texttt{(01010101010011110100)} $ $ \texttt{(10101110111000111011)} $ $ \texttt{(101010)} $
    4 $ \texttt{(00000110100111111111)} $ $ \texttt{(00110110000111101000)} $ $ \texttt{(11111011010111011000)} $ $ \texttt{(101001)} $
    5 $ \texttt{(11100011011110101011)} $ $ \texttt{(11110001101100110011)} $ $ \texttt{(00100010100000001010)} $ $ \texttt{(101010)} $
    6 $ \texttt{(11111110010110010010)} $ $ \texttt{(10001001101001001110)} $ $ \texttt{(01111010111110011001)} $ $ \texttt{(101001)} $
    7 $ \texttt{(00111010001011010100)} $ $ \texttt{(11001010111101110001)} $ $ \texttt{(10001100011010110001)} $ $ \texttt{(101010)} $
    8 $ \texttt{(00110011011011110001)} $ $ \texttt{(00101110100101000100)} $ $ \texttt{(10110001110000000001)} $ $ \texttt{(101110)} $
    9 $ \texttt{(10000011001000100011)} $ $ \texttt{(00110001010001110100)} $ $ \texttt{(00010001110001000101)} $ $ \texttt{(101101)} $
    10 $ \texttt{(11101110100101100010)} $ $ \texttt{(01110011001100110001)} $ $ \texttt{(00010100000110011010)} $ $ \texttt{(101101)} $
    11 $ \texttt{(00011011111101000011)} $ $ \texttt{(11000000001100111001)} $ $ \texttt{(10100000101010010010)} $ $ \texttt{(101110)} $
    12 $ \texttt{(00011110101110000110)} $ $ \texttt{(11000011010011000101)} $ $ \texttt{(01001010001111101110)} $ $ \texttt{(101110)} $
    13 $ \texttt{(00100000101100010000)} $ $ \texttt{(11010101010010100011)} $ $ \texttt{(01011101110000111001)} $ $ \texttt{(101101)} $
    14 $ \texttt{(10001111010001011100)} $ $ \texttt{(00000001010010011000)} $ $ \texttt{(01101011111010000110)} $ $ \texttt{(101101)} $
    15 $ \texttt{(10011111001010110001)} $ $ \texttt{(11000010101110010110)} $ $ \texttt{(01000011001011110111)} $ $ \texttt{(101110)} $
    16 $ \texttt{(11100100001011100001)} $ $ \texttt{(00101100110000110100)} $ $ \texttt{(00011111001001111100)} $ $ \texttt{(101101)} $
    17 $ \texttt{(10001110110000101100)} $ $ \texttt{(00111010000111110010)} $ $ \texttt{(01110111101001100001)} $ $ \texttt{(101110)} $
    18 $ \texttt{(00001101111100100101)} $ $ \texttt{(00011001110100011111)} $ $ \texttt{(01001100001011101111)} $ $ \texttt{(101110)} $
    $\mathcal{C}_{82,i}$ $W_{82,j}$ $\alpha$ $\beta$ $|\text{Aut}({\mathcal{C}_{82,i}})|$
    1 2 $-738$ $18$ $1$
    2 2 $-736$ $18$ $1$
    3 2 $-734$ $18$ $1$
    4 2 $-714$ $18$ $1$
    5 2 $-706$ $18$ $1$
    6 2 $-688$ $18$ $1$
    7 2 $-662$ $18$ $1$
    8 3 $-828$ $0$ $1$
    9 3 $-816$ $0$ $1$
    10 3 $-812$ $0$ $1$
    11 3 $-798$ $0$ $1$
    12 3 $-786$ $0$ $1$
    13 3 $-778$ $0$ $1$
    14 3 $-776$ $0$ $1$
    15 3 $-818$ $1$ $1$
    16 3 $-838$ $2$ $1$
    17 3 $-818$ $2$ $1$
    18 3 $-854$ $5$ $1$
     | Show Table
    DownLoad: CSV

    Table 8.  New binary self-dual $ [94,47,16] $ codes from Theorem 3.1 over $ \mathbb{F}_2 $, where $ \boldsymbol{{\xi}} = (\xi_1,\xi_2,\xi_3,\xi_4,\xi_5,\xi_6) $

    $ \mathcal{C}_{94,i} $ $ {\bf{{a}}} $ $ {\bf{{b}}} $ $ {\bf{{c}}} $ $ \boldsymbol{{\xi}} $
    1 $ \texttt{(01111111111001110101110)} $ $ \texttt{(01101101000111011010001)} $ $ \texttt{(00001000000000000000000)} $ $ \texttt{(001110)} $
    2 $ \texttt{(10010111111101010000010)} $ $ \texttt{(11100100111001001111001)} $ $ \texttt{(00001000000000000000000)} $ $ \texttt{(001110)} $
    3 $ \texttt{(01100111001001011111010)} $ $ \texttt{(10110101001111101000010)} $ $ \texttt{(11010111010100010110011)} $ $ \texttt{(001110)} $
    4 $ \texttt{(10010101100111000001101)} $ $ \texttt{(11010000110110110000001)} $ $ \texttt{(01010001111011001010111)} $ $ \texttt{(110010)} $
    5 $ \texttt{(00000111101001000010100)} $ $ \texttt{(11110100110110100111000)} $ $ \texttt{(01001111001111101100100)} $ $ \texttt{(001101)} $
    6 $ \texttt{(11011110010100111000000)} $ $ \texttt{(01110100011001101101111)} $ $ \texttt{(01110000001111000111111)} $ $ \texttt{(001101)} $
    7 $ \texttt{(01011011110110010001110)} $ $ \texttt{(10010110110110001100101)} $ $ \texttt{(00000100000000000000000)} $ $ \texttt{(110010)} $
    8 $ \texttt{(01100001100001100101010)} $ $ \texttt{(11111101000110000010101)} $ $ \texttt{(00100000000000000000000)} $ $ \texttt{(001101)} $
    9 $ \texttt{(00000111001111011011110)} $ $ \texttt{(11100000000100010011010)} $ $ \texttt{(01101111110111000010001)} $ $ \texttt{(110010)} $
    10 $ \texttt{(01101101011111000010001)} $ $ \texttt{(10100110011101001101101)} $ $ \texttt{(01011000110000010010101)} $ $ \texttt{(110010)} $
    11 $ \texttt{(11010010011100001111011)} $ $ \texttt{(10001110000000010001110)} $ $ \texttt{(11101110011100011101000)} $ $ \texttt{(110010)} $
    12 $ \texttt{(10101100011011001010111)} $ $ \texttt{(00010010000011111000010)} $ $ \texttt{(00111100000011101111110)} $ $ \texttt{(001101)} $
    $ \mathcal{C}_{94,i} $ $ W_{94,j} $ $ \alpha $ $ \beta $ $ |\text{Aut}({\mathcal{C}_{94,i}})| $
    1 1 $ 4646 $ $ -92 $ $ 2\cdot 23 $
    2 1 $ 3450 $ $ -46 $ $ 2\cdot 23 $
    3 1 $ 3680 $ $ -46 $ $ 23 $
    4 1 $ 3772 $ $ -46 $ $ 23 $
    5 1 $ 4186 $ $ -46 $ $ 23 $
    6 1 $ 2944 $ $ -23 $ $ 23 $
    7 1 $ 3680 $ $ -23 $ $ 23 $
    8 1 $ 2346 $ $ 0 $ $ 2\cdot 23 $
    9 1 $ 2530 $ $ 0 $ $ 23 $
    10 1 $ 2576 $ $ 0 $ $ 23 $
    11 1 $ 3496 $ $ 0 $ $ 23 $
    12 1 $ 3588 $ $ 0 $ $ 23 $
     | Show Table
    DownLoad: CSV
  • [1] K. BetsumiyaS. GeorgiouT. A. GulliverM. Harada and C. Koukouvinos, On self-dual codes over some prime fields, Discrete Math., 262 (2003), 37-58.  doi: 10.1016/S0012-365X(02)00520-4.
    [2] M. Bortos, J. Gildea, A. Kaya, A. Korban and A. Tylyshchak, New self-dual codes of length 68 from a $2\times2$ block matrix construction and group rings, Adv. Math. Commun., 16 (2022), 269-. doi: 10.3934/amc.2020111.
    [3] W. BosmaJ. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.
    [4] I. Boukliev and S. Buyuklieva, Some New Extremal Self-Dual Codes with Lengths $44, 50, 54$, and $58$, IEEE Trans. Inform. Theory, 44 (1998), 809-812.  doi: 10.1109/18.661526.
    [5] I. G. Bouyukliev, What is Q-extension?, Serdica J. Comput., 1 (2007), 115-130. 
    [6] S. Buyuklieva and I. Boukliev, Extremal self-dual codes with an automorphism of order $2$, IEEE Trans. Inform. Theory, 44 (1998), 323-328.  doi: 10.1109/18.651059.
    [7] S. Bouyuklieva and P. R. J. Östergøard, New constructions of optimal self-dual binary codes of length 54, Des. Codes Cryptogr., 41 (2006), 101-109.  doi: 10.1007/s10623-006-0018-2.
    [8] S. BouyuklievaR. Russeva and N. Yankov, On the structure of binary self-dual codes having an automorphism of order a square of an odd prime, IEEE Trans. Inform. Theory, 51 (2005), 3678-3686.  doi: 10.1109/TIT.2005.855616.
    [9] P. ÇomakJ.-L. Kim and F. Özbudak, New cubic self-dual codes of length 54, 60 and 66, Appl. Algebra Engrg. Comm. Comput., 29 (2018), 303-312.  doi: 10.1007/s00200-017-0343-x.
    [10] J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.  doi: 10.1109/18.59931.
    [11] S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.
    [12] S. T. DoughertyP. GaboritM. Harada and P. Solé, Type Ⅱ Codes over $\mathbb{F}_2+u\mathbb{F}_2$, IEEE Trans. Inform. Theory, 45 (1999), 32-45.  doi: 10.1109/18.746770.
    [13] S. T. Dougherty, J. Gildea and A. Kaya, $2^n$ Bordered constructions of self-dual codes from group rings, Finite Fields Appl., 67 (2020), 101692, 17 pp. doi: 10.1016/j.ffa.2020.101692.
    [14] S. T. DoughertyJ. Gildea and A. Kaya, Quadruple bordered constructions of self-dual codes from group rings, Cryptogr. Commun., 12 (2020), 127-146.  doi: 10.1007/s12095-019-00380-8.
    [15] S. T. DoughertyJ. GildeaA. Kaya and B. Yildiz, New self-dual and formally self-dual codes from group ring constructions, Adv. Math. Commun., 14 (2020), 11-22.  doi: 10.3934/amc.2020002.
    [16] S. T. DoughertyJ. GildeaA. Korban and A. Kaya, Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68, Adv. Math. Commun., 14 (2020), 677-702.  doi: 10.3934/amc.2020037.
    [17] S. T. DoughertyJ. GildeaA. Korban and A. Kaya, New extremal self-dual binary codes of length 68 via composite construction, $\mathbb{F}_2+u\mathbb{F}_2$ lifts, extensions and neighbours, Int. J. Inf. Coding Theory, 5 (2018), 211-226. 
    [18] S. T. DoughertyJ. GildeaA. Korban and A. Kaya, Composite matrices from group rings, composite $G$-codes and constructions of self-dual codes, Des. Codes Cryptogr., 89 (2021), 1615-1638.  doi: 10.1007/s10623-021-00882-8.
    [19] S. T. DoughertyJ. GildeaA. KorbanA. KayaA. Tylyshchak and B. Yildiz, Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes, Finite Fields Appl., 57 (2019), 108-127.  doi: 10.1016/j.ffa.2019.02.004.
    [20] S. T. DoughertyT. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory, 43 (1997), 2036-2047.  doi: 10.1109/18.641574.
    [21] S. T. Dougherty and M. Harada, New extremal self-dual codes of length $68$, IEEE Trans. Inform. Theory, 45 (1999), 2133-2136.  doi: 10.1109/18.782158.
    [22] J. Gildea, H. Hamilton, A. Kaya and B. Yildiz, Modified quadratic residue constructions and new extremal binary self-dual codes of lengths 64, 66 and 68, Inform. Process. Lett., 157 (2020), 105927, 8 pp. doi: 10.1016/j.ipl.2020.105927.
    [23] J. Gildea, A. Kaya, A. Korban and A. Tylyshchak, Self-dual codes using bisymmetric matrices and group rings, Discrete Math., 343 (2020), 112085, 10 pp. doi: 10.1016/j.disc.2020.112085.
    [24] J. Gildea, A. Kaya, A. Korban and B. Yildiz, New extremal binary self-dual codes of length 68 from generalized neighbors, Finite Fields Appl., 67 (2020), 101727, 12 pp. doi: 10.1016/j.ffa.2020.101727.
    [25] J. Gildea, A. Kaya, A. M. Roberts, R. Taylor and A. Tylyshchak, New self-dual codes from $2\times 2$ block circulant matrices, group rings and neighbours of neighbours, Adv. Math. Commun., (2021). doi: 10.3934/amc.2021039.
    [26] J. Gildea, A. Kaya, R. Taylor, A. Tylyshchak and B. Yildiz, New extremal binary self-dual codes from block circulant matrices and block quadratic residue circulant matrices, Discrete Math., 344 (2021), 112590, 11 pp. doi: 10.1016/j.disc.2021.112590.
    [27] J. GildeaA. KayaR. Taylor and B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Appl., 51 (2018), 71-92.  doi: 10.1016/j.ffa.2018.01.002.
    [28] J. Gildea, A. Kaya, A. Tylyshchak and B. Yildiz, A group induced four-circulant construction for self-dual codes and new extremal binary self-dual codes, Discrete Math., 342 (2019), 111620, 8 pp, arXiv: 1912.11758. doi: 10.1016/j.disc.2019.111620.
    [29] J. GildeaA. KayaA. Tylyshchak and B. Yildiz, A modified bordered construction for self-dual codes from group rings, J. Algebra Comb. Discrete Struct. Appl., 7 (2020), 103-119.  doi: 10.13069/jacodesmath.729402.
    [30] J. Gildea, A. Kaya and B. Yildiz, An altered four circulant construction for self-dual codes from group rings and new extremal binary self-dual codes. I, Discrete Math., 342 (2019), 112620, 8 pp. doi: 10.1016/j.disc.2019.111620.
    [31] J. GildeaA. Kaya and B. Yildiz, New binary self-dual codes via a variation of the four-circulant construction, Math. Commun., 25 (2020), 213-226. 
    [32] J. GildeaA. KorbanA. Kaya and B. Yildiz, Constructing self-dual codes from group rings and reverse circulant matrices, Adv. Math. Commun., 15 (2021), 471-485.  doi: 10.3934/amc.2020077.
    [33] J. Gildea, A. Korban and A. M. Roberts, New binary self-dual codes of lengths 56, 58, 64, 80 and 92 from a modification of the four circulant construction, Finite Fields Appl., 75 (2021), 101876, 21 pp. doi: 10.1016/j.ffa.2021.101876.
    [34] J. Gildea, A. Korban, A. M. Roberts and A. Tylyshchak, Generator matrix database, (2021), https://amr5-g2w6r1kdi8.netlify.app.
    [35] J. Gildea, A. Korban, A. M. Roberts and A. Tylyshchak, New binary self-dual codes of lengths 56, 62, 78, 92 and 94 from a bordered construction, (2021), arXiv: 2108.09184.
    [36] J. GildeaR. TaylorA. Kaya and A. Tylyshchak, Double bordered constructions of self-dual codes from group rings over Frobenius rings, Cryptogr. Commun., 12 (2020), 769-784.  doi: 10.1007/s12095-019-00420-3.
    [37] T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 64 to 72, Des. Codes Cryptogr., 13 (1998), 257-269.  doi: 10.1023/A:1008249924142.
    [38] T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 74–88, Discrete Math., 306 (2006), 2064-2072.  doi: 10.1016/j.disc.2006.05.004.
    [39] T. A. Gulliver and M. Harada, On extremal double circulant self-dual codes of lengths 90–96, Appl. Algebra Engrg. Comm. Comput., 30 (2019), 403-415.  doi: 10.1007/s00200-019-00381-3.
    [40] M. Gürel and N. Yankov, Self-dual codes with an automorphism of order 17, Math. Commun., 21 (2016), 97-107. 
    [41] M. Harada, Singly even self-dual codes of length $24k+10$ and minimum weight $4k+2$, Cryptogr. Commun., 11 (2019), 597-608.  doi: 10.1007/s12095-018-0303-8.
    [42] M. HaradaT. A. Gulliver and H. Kaneta, Classification of extremal double-circulant self-dual codes of length up to $62$, Discrete Math., 188 (1998), 127-136.  doi: 10.1016/S0012-365X(97)00250-1.
    [43] M. HaradaM. KiermaierA. Wassermann and R. Yorgova, New binary singly even self-dual codes, IEEE Trans. Inform. Theory, 56 (2010), 1612-1617.  doi: 10.1109/TIT.2010.2040967.
    [44] M. Harada and H. Kimura, On extremal self-dual codes, Math. J. Okayama Univ., 37 (1995), 1-14. 
    [45] M. Harada and T. Nishimura, An extremal singly even self-dual code of length 88, Adv. Math. Commun., 1 (2007), 261-267.  doi: 10.3934/amc.2007.1.261.
    [46] S. Karadeniz and B. Yildiz, New extremal binary self-dual codes of length 68 from $R_2$-lifts of binary self-dual codes, Adv. Math. Commun., 7 (2013), 219-229.  doi: 10.3934/amc.2013.7.219.
    [47] S. KaradenizB. Yildiz and N. Aydin, Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over $\mathbb{F}_2+u\mathbb{F}_2$, Filomat, 28 (2014), 937-945.  doi: 10.2298/FIL1405937K.
    [48] A. Kaya, New extremal binary self-dual codes of length 68 via the short Kharaghani array over $\mathbb{F}_2+u\mathbb{F}_2$, Math. Commun., 22 (2017), 121-131. 
    [49] A. Kaya and N. Tüfekçi, New extremal binary self-dual codes of lengths 66 and 68 from codes over $R_{k, m}$, Bull. Korean Math. Soc., 54 (2017), 29-42.  doi: 10.4134/BKMS.b150213.
    [50] A. Kaya and B. Yildiz, New extremal binary self-dual codes of length 68, J. Algebra Comb. Discrete Struct. Appl., 1 (2014), 29-39.  doi: 10.13069/jacodesmath.79879.
    [51] A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, Discrete Math., 339 (2016), 460-469.  doi: 10.1016/j.disc.2015.09.010.
    [52] A. Kaya and B. Yildiz, New extremal binary self-dual codes from a Baumert-Hall array, Discrete Appl. Math., 271 (2019), 74-83.  doi: 10.1016/j.dam.2019.08.003.
    [53] A. KayaB. Yildiz and A. Pasa, New extremal binary self-dual codes from a modified four circulant construction, Discrete Math., 339 (2016), 1086-1094.  doi: 10.1016/j.disc.2015.10.041.
    [54] A. KayaB. Yildiz and I. Siap, New extremal binary self-dual codes of length 68 from quadratic residue codes over $\mathbb{F}_2+u\mathbb{F}_2+u^2\mathbb{F}_2$, Finite Fields Appl., 29 (2014), 160-177.  doi: 10.1016/j.ffa.2014.04.009.
    [55] A. KayaB. Yildiz and I. Siap, New extremal binary self-dual codes from $\mathbb{F}_4+u\mathbb{F}_4$-lifts of quadratic circulant codes over $\mathbb{F}_4$, Finite Fields Appl., 35 (2015), 318-329.  doi: 10.1016/j.ffa.2015.05.004.
    [56] C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes, Inf. Control, 22 (1973), 188-200.  doi: 10.1016/S0019-9958(73)90273-8.
    [57] A. Munemasa, On the Enumeration of Binary Self-Dual Codes, 2009, https://www.math.is.tohoku.ac.jp/munemasa/preprints/enumeration.pdf.
    [58] E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory, 44 (1998), 134-139.  doi: 10.1109/18.651000.
    [59] A. M. Roberts, Weight Enumerator Parameter Database for Binary Self-Dual Codes, 2021, https://amr-wepd-bsdc.netlify.app.
    [60] V. Tonchev and V. Y. Yorgov, The existence of certain extremal $[54, 27, 10]$ self-dual codes, IEEE Trans. Inform. Theory, 42 (1996), 1628-1631.  doi: 10.1109/18.532913.
    [61] H.-P. Tsai, Extremal self-dual codes of lengths $66$ and $68$, IEEE Trans. Inform. Theory, 45 (1999), 2129-2133.  doi: 10.1109/18.782156.
    [62] H.-P. TsaiP.-Y. ShihR.-Y. WuW.-K. Su and C.-H. Chen, Construction of self-dual codes, IEEE Trans. Inform. Theory, 54 (2008), 3826-3831.  doi: 10.1109/TIT.2008.926454.
    [63] N. Yankov, Self-dual $[62, 31, 12]$ and $[64, 32, 12]$ codes with an automorphism of order 7, Adv. Math. Commun., 8 (2014), 73-81.  doi: 10.3934/amc.2014.8.73.
    [64] N. Yankov and D. Anev, On the self-dual codes with an automorphism of order 5, Appl. Algebra Engrg. Comm. Comput., 32 (2021), 97-111.  doi: 10.1007/s00200-019-00403-0.
    [65] N. YankovD. Anev and M. Gürel, Self-dual codes with an automorphism of order 13, Adv. Math. Commun., 11 (2017), 635-645.  doi: 10.3934/amc.2017047.
    [66] N. YankovM. Ivanova and M. H. Lee, Self-dual codes with an automorphism of order 7 and $s$-extremal codes of length 68, Finite Fields Appl., 51 (2018), 17-30.  doi: 10.1016/j.ffa.2017.12.001.
    [67] N. Yankov and M. H. Lee, New binary self-dual codes of lengths 50–60, Des. Codes Cryptogr., 73 (2014), 983-996.  doi: 10.1007/s10623-013-9839-y.
    [68] N. YankovM. H. LeeM. Gürel and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory, 61 (2015), 1188-1193.  doi: 10.1109/TIT.2015.2396915.
    [69] N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13, IEEE Trans. Inform. Theory, 57 (2011), 7498-7506.  doi: 10.1109/TIT.2011.2155619.
  • 加载中

Tables(8)

SHARE

Article Metrics

HTML views(3959) PDF downloads(704) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return