Jump to content

Solar eclipse of April 28, 1949

From Wikipedia, the free encyclopedia
Solar eclipse of April 28, 1949
Map
Type of eclipse
NaturePartial
Gamma1.2068
Magnitude0.6092
Maximum eclipse
Coordinates61°54′N 55°42′W / 61.9°N 55.7°W / 61.9; -55.7
Times (UTC)
Greatest eclipse7:48:53
References
Saros147 (19 of 80)
Catalog # (SE5000)9396

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, April 28, 1949, with a magnitude of 0.6092. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

[edit]

Eclipses in 1949

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 147

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1946–1949

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on January 3, 1946 and June 29, 1946 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1946 to 1949
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 May 30, 1946

Partial
−1.0711 122 November 23, 1946

Partial
1.105
127 May 20, 1947

Total
−0.3528 132 November 12, 1947

Annular
0.3743
137 May 9, 1948

Annular
0.4133 142 November 1, 1948

Total
−0.3517
147 April 28, 1949

Partial
1.2068 152 October 21, 1949

Partial
−1.027

Saros 147

[edit]

This eclipse is a part of Saros series 147, repeating every 18 years, 11 days, and containing 80 events. The series started with a partial solar eclipse on October 12, 1624. It contains annular eclipses from May 31, 2003 through July 31, 2706. There are no hybrid or total eclipses in this set. The series ends at member 80 as a partial eclipse on February 24, 3049. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 38 at 9 minutes, 41 seconds on November 21, 2291. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

Series members 11–32 occur between 1801 and 2200:
11 12 13

January 30, 1805

February 11, 1823

February 21, 1841
14 15 16

March 4, 1859

March 15, 1877

March 26, 1895
17 18 19

April 6, 1913

April 18, 1931

April 28, 1949
20 21 22

May 9, 1967

May 19, 1985

May 31, 2003
23 24 25

June 10, 2021

June 21, 2039

July 1, 2057
26 27 28

July 13, 2075

July 23, 2093

August 4, 2111
29 30 31

August 15, 2129

August 26, 2147

September 5, 2165
32

September 16, 2183

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 2, 1880 and July 9, 1964
December 2–3 September 20–21 July 9–10 April 26–28 February 13–14
111 113 115 117 119

December 2, 1880

July 9, 1888

April 26, 1892

February 13, 1896
121 123 125 127 129

December 3, 1899

September 21, 1903

July 10, 1907

April 28, 1911

February 14, 1915
131 133 135 137 139

December 3, 1918

September 21, 1922

July 9, 1926

April 28, 1930

February 14, 1934
141 143 145 147 149

December 2, 1937

September 21, 1941

July 9, 1945

April 28, 1949

February 14, 1953
151 153 155

December 2, 1956

September 20, 1960

July 9, 1964

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on November 16, 2134 (part of Saros 164) and October 16, 2145 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2069

June 6, 1807
(Saros 134)

May 5, 1818
(Saros 135)

April 3, 1829
(Saros 136)

March 4, 1840
(Saros 137)

February 1, 1851
(Saros 138)

December 31, 1861
(Saros 139)

November 30, 1872
(Saros 140)

October 30, 1883
(Saros 141)

September 29, 1894
(Saros 142)

August 30, 1905
(Saros 143)

July 30, 1916
(Saros 144)

June 29, 1927
(Saros 145)

May 29, 1938
(Saros 146)

April 28, 1949
(Saros 147)

March 27, 1960
(Saros 148)

February 25, 1971
(Saros 149)

January 25, 1982
(Saros 150)

December 24, 1992
(Saros 151)

November 23, 2003
(Saros 152)

October 23, 2014
(Saros 153)

September 21, 2025
(Saros 154)

August 21, 2036
(Saros 155)

July 22, 2047
(Saros 156)

June 21, 2058
(Saros 157)

May 20, 2069
(Saros 158)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

August 5, 1804
(Saros 142)

July 17, 1833
(Saros 143)

June 27, 1862
(Saros 144)

June 6, 1891
(Saros 145)

May 18, 1920
(Saros 146)

April 28, 1949
(Saros 147)

April 7, 1978
(Saros 148)

March 19, 2007
(Saros 149)

February 27, 2036
(Saros 150)

February 5, 2065
(Saros 151)

January 16, 2094
(Saros 152)

December 28, 2122
(Saros 153)

December 8, 2151
(Saros 154)

November 17, 2180
(Saros 155)

References

[edit]
  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 147". eclipse.gsfc.nasa.gov.
[edit]