Jump to content

Solar eclipse of February 17, 2064

From Wikipedia, the free encyclopedia
Solar eclipse of February 17, 2064
Map
Type of eclipse
NatureAnnular
Gamma0.3597
Magnitude0.9262
Maximum eclipse
Duration536 s (8 min 56 s)
Coordinates7°00′N 69°42′E / 7°N 69.7°E / 7; 69.7
Max. width of band295 km (183 mi)
Times (UTC)
Greatest eclipse7:00:23
References
Saros141 (26 of 70)
Catalog # (SE5000)9650

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

[edit]

Eclipses in 2064

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 141

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 2062–2065

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on July 3, 2065 and December 27, 2065 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2062 to 2065
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121 March 11, 2062

Partial
−1.0238 126 September 3, 2062

Partial
1.0191
131 February 28, 2063

Annular
−0.336 136 August 24, 2063

Total
0.2771
141 February 17, 2064

Annular
0.3597 146 August 12, 2064

Total
−0.4652
151 February 5, 2065

Partial
1.0336 156 August 2, 2065

Partial
−1.2759

Saros 141

[edit]

This eclipse is a part of Saros series 141, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 19, 1613. It contains annular eclipses from August 4, 1739 through October 14, 2640. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on June 13, 2857. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 20 at 12 minutes, 9 seconds on December 14, 1955. All eclipses in this series occur at the Moon’s ascending node of orbit.[2]

Series members 12–33 occur between 1801 and 2200:
12 13 14

September 17, 1811

September 28, 1829

October 9, 1847
15 16 17

October 19, 1865

October 30, 1883

November 11, 1901
18 19 20

November 22, 1919

December 2, 1937

December 14, 1955
21 22 23

December 24, 1973

January 4, 1992

January 15, 2010
24 25 26

January 26, 2028

February 5, 2046

February 17, 2064
27 28 29

February 27, 2082

March 10, 2100

March 22, 2118
30 31 32

April 1, 2136

April 12, 2154

April 23, 2172
33

May 4, 2190

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 13, 2018 and July 12, 2094
July 12–13 April 30–May 1 February 16–17 December 5–6 September 22–23
117 119 121 123 125

July 13, 2018

April 30, 2022

February 17, 2026

December 5, 2029

September 23, 2033
127 129 131 133 135

July 13, 2037

April 30, 2041

February 16, 2045

December 5, 2048

September 22, 2052
137 139 141 143 145

July 12, 2056

April 30, 2060

February 17, 2064

December 6, 2067

September 23, 2071
147 149 151 153 155

July 13, 2075

May 1, 2079

February 16, 2083

December 6, 2086

September 23, 2090
157

July 12, 2094

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

March 4, 1802
(Saros 117)

February 1, 1813
(Saros 118)

January 1, 1824
(Saros 119)

November 30, 1834
(Saros 120)

October 30, 1845
(Saros 121)

September 29, 1856
(Saros 122)

August 29, 1867
(Saros 123)

July 29, 1878
(Saros 124)

June 28, 1889
(Saros 125)

May 28, 1900
(Saros 126)

April 28, 1911
(Saros 127)

March 28, 1922
(Saros 128)

February 24, 1933
(Saros 129)

January 25, 1944
(Saros 130)

December 25, 1954
(Saros 131)

November 23, 1965
(Saros 132)

October 23, 1976
(Saros 133)

September 23, 1987
(Saros 134)

August 22, 1998
(Saros 135)

July 22, 2009
(Saros 136)

June 21, 2020
(Saros 137)

May 21, 2031
(Saros 138)

April 20, 2042
(Saros 139)

March 20, 2053
(Saros 140)

February 17, 2064
(Saros 141)

January 16, 2075
(Saros 142)

December 16, 2085
(Saros 143)

November 15, 2096
(Saros 144)

October 16, 2107
(Saros 145)

September 15, 2118
(Saros 146)

August 15, 2129
(Saros 147)

July 14, 2140
(Saros 148)

June 14, 2151
(Saros 149)

May 14, 2162
(Saros 150)

April 12, 2173
(Saros 151)

March 12, 2184
(Saros 152)

February 10, 2195
(Saros 153)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

August 17, 1803
(Saros 132)

July 27, 1832
(Saros 133)

July 8, 1861
(Saros 134)

June 17, 1890
(Saros 135)

May 29, 1919
(Saros 136)

May 9, 1948
(Saros 137)

April 18, 1977
(Saros 138)

March 29, 2006
(Saros 139)

March 9, 2035
(Saros 140)

February 17, 2064
(Saros 141)

January 27, 2093
(Saros 142)

January 8, 2122
(Saros 143)

December 19, 2150
(Saros 144)

November 28, 2179
(Saros 145)

References

[edit]
  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 141". eclipse.gsfc.nasa.gov.
[edit]