Jump to content

Solar eclipse of March 27, 1960

From Wikipedia, the free encyclopedia
Solar eclipse of March 27, 1960
Map
Type of eclipse
NaturePartial
Gamma−1.1537
Magnitude0.7058
Maximum eclipse
Coordinates72°06′S 151°54′E / 72.1°S 151.9°E / -72.1; 151.9
Times (UTC)
Greatest eclipse7:25:07
References
Saros148 (18 of 75)
Catalog # (SE5000)9420

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This eclipse was observable from parts of the Antarctic Ocean and Indian Ocean.

[edit]

Eclipses in 1960

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 148

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1957–1960

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 1957 to 1960
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
118 April 30, 1957

Annular (non-central)
0.9992 123 October 23, 1957

Total (non-central)
1.0022
128 April 19, 1958

Annular
0.275 133 October 12, 1958

Total
−0.2951
138 April 8, 1959

Annular
−0.4546 143 October 2, 1959

Total
0.4207
148 March 27, 1960

Partial
−1.1537 153 September 20, 1960

Partial
1.2057

Saros 148

[edit]

This eclipse is a part of Saros series 148, repeating every 18 years, 11 days, and containing 75 events. The series started with a partial solar eclipse on September 21, 1653. It contains annular eclipses on April 29, 2014 and May 9, 2032; a hybrid eclipse on May 20, 2050; and total eclipses from May 31, 2068 through August 3, 2771. The series ends at member 75 as a partial eclipse on December 12, 2987. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 22 at 22 seconds (by default) on May 9, 2032, and the longest duration of totality will be produced by member 54 at 5 minutes, 23 seconds on April 26, 2609. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 10–31 occur between 1801 and 2200:
10 11 12

December 30, 1815

January 9, 1834

January 21, 1852
13 14 15

January 31, 1870

February 11, 1888

February 23, 1906
16 17 18

March 5, 1924

March 16, 1942

March 27, 1960
19 20 21

April 7, 1978

April 17, 1996

April 29, 2014
22 23 24

May 9, 2032

May 20, 2050

May 31, 2068
25 26 27

June 11, 2086

June 22, 2104

July 4, 2122
28 29 30

July 14, 2140

July 25, 2158

August 4, 2176
31

August 16, 2194

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29 January 14 November 1–2 August 20–21 June 8
108 110 112 114 116

March 27, 1884

August 20, 1895

June 8, 1899
118 120 122 124 126

March 29, 1903

January 14, 1907

November 2, 1910

August 21, 1914

June 8, 1918
128 130 132 134 136

March 28, 1922

January 14, 1926

November 1, 1929

August 21, 1933

June 8, 1937
138 140 142 144 146

March 27, 1941

January 14, 1945

November 1, 1948

August 20, 1952

June 8, 1956
148 150 152 154

March 27, 1960

January 14, 1964

November 2, 1967

August 20, 1971

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on November 16, 2134 (part of Saros 164) and October 16, 2145 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2069

June 6, 1807
(Saros 134)

May 5, 1818
(Saros 135)

April 3, 1829
(Saros 136)

March 4, 1840
(Saros 137)

February 1, 1851
(Saros 138)

December 31, 1861
(Saros 139)

November 30, 1872
(Saros 140)

October 30, 1883
(Saros 141)

September 29, 1894
(Saros 142)

August 30, 1905
(Saros 143)

July 30, 1916
(Saros 144)

June 29, 1927
(Saros 145)

May 29, 1938
(Saros 146)

April 28, 1949
(Saros 147)

March 27, 1960
(Saros 148)

February 25, 1971
(Saros 149)

January 25, 1982
(Saros 150)

December 24, 1992
(Saros 151)

November 23, 2003
(Saros 152)

October 23, 2014
(Saros 153)

September 21, 2025
(Saros 154)

August 21, 2036
(Saros 155)

July 22, 2047
(Saros 156)

June 21, 2058
(Saros 157)

May 20, 2069
(Saros 158)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

July 6, 1815
(Saros 143)

June 16, 1844
(Saros 144)

May 26, 1873
(Saros 145)

May 7, 1902
(Saros 146)

April 18, 1931
(Saros 147)

March 27, 1960
(Saros 148)

March 7, 1989
(Saros 149)

February 15, 2018
(Saros 150)

January 26, 2047
(Saros 151)

January 6, 2076
(Saros 152)

December 17, 2104
(Saros 153)

November 26, 2133
(Saros 154)

November 7, 2162
(Saros 155)

October 18, 2191
(Saros 156)

References

[edit]
  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 148". eclipse.gsfc.nasa.gov.
[edit]